
Transport in a metallic nanotube at finite temperature

Wei Ren,1,* Cai-Zhuang Wang,2 Kai-Ming Ho,2 and C. T. Chan1

1Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
2Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011, USA

�Received 21 November 2008; revised manuscript received 9 March 2009; published 27 April 2009�

We consider the effect of thermal phonon displacements on the coherent transport in carbon nanotubes. The
atomic displacements are generated using tight-binding molecular dynamics simulations, and the conductances
are computed using a nonequilibrium Green’s function technique. Atomic displacements due to lattice vibra-
tions lead to different levels of conductance reduction and fluctuation on the massive and massless bands of a
metallic nanotube. Different conduction regimes are studied by examining the resistance on different length
scales. The temperature-induced displacements have a significant impact on the ballistic or diffusive transport
in carbon nanotube.
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Resistive heating is expected to be a severe problem when
the miniaturization of electronic components reaches the ul-
timate limit of the nanoscale. Such an overheating effect is
unavoidable for nanowire made of the ordinary metals or
III-V semiconductors. As a potentially ballistic conductor,1

carbon nanotubes seem to offer a unique alternative conduct-
ing wires and elements. This is a result of their peculiar band
dispersion and absence of surface scattering for conduction
electrons. On the other hand, there must be a transition from
ballistic to diffusive transport and eventually to localization
behavior in a one-dimensional system when disorder sets in.
The question is about the length of the tube and the amount
of disorder that will make such transitions observable. We
present results of electron transport for carbon nanotube seg-
ments of different lengths in the presence of different amount
of atomic position disorder, owing to the finite temperature-
induced lattice vibrations. The atomic displacements are gen-
erated using the tight-binding molecular dynamics �TBMD�.
The impact of lattice distortions on the charge transport is
captured by the configurational averaging statistics. In this
scheme, electron-phonon interactions for a large number of
vibrational modes in realistic nanotubes need not be directly
calculated.2 In contrast, so far calculations of electron-
phonon matrix element calculations have been limited to
study periodic nanotube or small molecular systems.3

The model structure is an armchair metallic �6,6� nano-
tube which consists of 576 carbon atoms in the scattering
region �d�60 Å in length�. To better deal with the low fre-
quency acoustic and optical phonon modes an even longer
tube supercell could be considered, although that makes our
computation more expensive. First, we run TBMD �Ref. 4� at
100, 300, and 700 K, where the temperature has been res-
caled to take zero point motion into account. The details of
the TBMD method can be found elsewhere.5,6 The advantage
of the TBMD approach is that it incorporates the electronic
effects into molecular dynamics �MD� through an
environment-dependent tight-binding Hamiltonian,7,8 with
parameters fitted to a very broad data generated by first-
principles calculations. We have calculated some phonon fre-
quencies of diamond and graphene structures at some se-
lected zone boundary points using this environment-
dependent TB model and compared the results with
experiments very well. It can obtain structural and phononic

properties with an accuracy that is comparable to first-
principles calculations but with much less computation re-
sources. The temperature-dependent anharmonic effects are
automatically included in the lattice vibration properties. We
let the system reach equilibration, and the atomic configura-
tions for 300 snapshot frames were then extracted from 3000
MD steps at a specific temperature. For each of these con-
figurations, we calculate the linear response conductance
G�E�=g�E�2e2 /h where the transmission g�E� is calculated
by Green’s function and Landauer formula.9 The calculated
conductance has been be averaged over the ensemble of 300
configurations. Two perfect semi-infinite �6,6� nanotube elec-
trodes were connected to our vibration scattering region by
transparent intratube contacts.10 To include the effect of tem-
perature in the conductance, we have G�T�= 2e2

h �−�
� g�E��

− �f
�E �dE where f =1 / �e�E−Ef�/kBT+1� is the Fermi-Dirac distri-

bution function. Essentially this is a convolution of the con-
ductance and the thermal smearing function − �f

�E
= 1

4kBTsec h2� E
2kBT � which averages the zero-temperature con-

ductance over an energy range of kBT. The covalent-bond
length dependent Hamiltonian matrix elements are computed
by the transferable tight-binding potential. We introduce no
impurity or vacancy defect11 scatterers in the whole carbon
network, and thus solely the lattice disorder comes from the
displacements due to the thermal phonons. The change in
conductance is due to the scattering effect of the “frozen”
phonons as a result at a particular temperature. In experimen-
tal situations, the defect disorder effect12 will superimpose on
the phonon effect and may play an important role in the
low-temperature regime. Our approach is based on solving a
stationary Schrodinger equation, assuming adiabatic approxi-
mation to be validated.13 At this point, we should spell out
the limitation of the present approach, which treats the effect
on the resistance of nanotubes due to thermal phonons by
considering the effect of lattice displacement on transport. In
the case of static disorder of atomic coordinates, the spatial
localization of electron wave functions is the consequence of
the interference effect of multiple scattered electron waves.
In a dynamical situation, the mechanism is much more com-
plicated. For example, dynamical scattering events can lead
to complexities such as dephasing due to inelastic scattering,
phonon-assisted tunneling, phonon induced nonequilibrium
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gap opening.14–16 These phenomena, which will affect trans-
port, cannot be captured in the present static approach. The
effect of nonadiabatic effects on electron dynamics in the
presence of moving nuclei is beyond the scope of this work.
Acoustic phonon is operative in our investigation, while we
have restricted ourselves to the low applied bias regime co-
herent transport. Therefore the optical phonon limited high-
field mobility of carbon nanotubes is not accessible with this
methodology.

In Fig. 1�a�, we compare the averaged conductance at
100, 300, and 700 K �over 300 configurations� with the bal-
listic conductance for an ideally periodic nanotube without
phonon displacements, where the conductance is indepen-
dent of the sample length. This is the ideal ballistic transport
for the nanowire which does not follow the Ohm’s law.10

However temperature introduces atomic displacements and
significant backscattering for electronic states far away from
the Fermi level Ef while having only minimal effects on the
linear bands crossing at Ef. This effect roots in the fact that
only two bands of different symmetries contribute to trans-
port near Fermi level,17 and the special topological properties
of the dispersion near the Dirac point protects the system
from backscattering between one band and the other at the
same K point. Although K→K� backscattering is allowed,
the long-range atomic displacement due to phonons is very
insufficient in causing such large momentum transitions. But
these arguments do not apply to other bands, and the effect
of atomic displacement on scattering is much higher. From
Fig. 1�a� conductance dips at subband edges are also ob-
served, when a new set of states across the threshold starts to
contribute. At the higher subbands, a lot more backscatter-
ings can take place and the transport behavior will then be-
come diffusive in those energies.

The sample-to-sample variation in conductance is also an
important piece of information about the conductive proper-
ties of nanotubes. The universal conductance fluctuation
�UCF� �Refs. 18 and 19� behavior in quasi-one-dimensional
systems can be observed on the higher-energy massive bands
of the nanotube. This UCF value of 0.365 �2e2 /h� again

shows a diffusive transport characteristic in the higher-
energy bands at the specific temperature. But for the mass-
less linear band near Fermi point, the UCF prefactor value is
remarkably suppressed by nearly one-half. In another inde-
pendent work based on random on-site potential disorder
model, we have actually overlooked this distinctive feature
�see Fig. 1 of Ref. 9�. Figure 1�b� shows the root-mean-
square �rms� �G= ��G2�− �G�2�1/2� values of the averages in
Fig. 1�a�. At first sight, the rms reduction value by a factor of
2 seems to coincide with the characteristic of symplectic
symmetry for the linear band of carbon nanotube. Corre-
sponding to Dyson’s classification of orthogonal, unitary and
symplectic symmetry classes, the UCF values have been dis-
covered to be 	2 /15�, where �=1, 2, and 4, respectively. An
interesting question to ask is that whether this reduction re-
flects the genuine symplectic universality. If so, should it be
independent on many parameters? We have compared the
fluctuations of the two different energy regions: one near and
one far away from the Dirac point as a function of tube
length and as a function of disorder. We found that the UCF
values reaches 0.365 �2e2 /h� very quickly for energies far
away from the Dirac point. For energies near the Dirac point,
the UCF value is length dependent and will increase to 0.365
�2e2 /h� for a sufficiently long tube, and thus, this value seen
in Fig. 1�b� is just an intermediate behavior before the con-
ventional UCF shows up for a much longer nanotube or
equivalently stronger disorder. In other words, this merely
manifests the fact of robust quasiballistic transport at the
nanotube Fermi level within a weakly disordered regime. As
we increase the nanotube length, we find that the “symplec-
ticlike” fluctuation will cross over to the normal UCF
value.20 The conductance fluctuation value from the linear
bands will rise as the tube length increases and eventually
level off at the normal UCF value. Interestingly very recently
the suppression of conductance fluctuation in the mesoscopic
graphene samples near the charge neutrality point has been
reported.21

We see that near Ef, the intrinsic conductance of nanotube
only degrades slightly at room temperature or even up to 700
K. This weak temperature dependence behavior is crucial for
the applications of nanotubes as metallic quantum wire.
From the bond length statistics in Fig. 2, different tempera-
tures lead to different structural disorders and, thus, to the
fluctuations of hopping energies in tight-binding model. The
equilibrium carbon-carbon atom distances are single valued
at 1.42 Å for the nearest neighbors, 2.46 Å for the second
nearest neighbors, and 2.84 Å for the third �vertical lines in
Fig. 2�. In particular, we observe that the lengths of double
�r=1.31 Å�, conjugated �r=1.42 Å�, and single �r
=1.54 Å� bonds are all present in the radial distribution
function.22 The radial distribution functions are all broadened
increasingly as temperature goes up, with a corresponding
decrease in height. Anyhow these dependences are relatively
insignificant since carbon has a very high Debye tempera-
ture. We also note that the peaks in radial distribution func-
tion are not symmetrically distributed due to anharmonicity
contribution captured in our TBMD scheme.

To consider the disorder effect on tubes of increasing
lengths, we randomly interconnect different segments of MD
generated nanotube atomic coordinates to form longer tubes
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FIG. 1. �Color online� �a� One segment of vibrated metallic
nanotube �length: d�60 Å� carries suppressed average conduc-
tance especially for higher-energy states, while less affected for
linear band near Fermi energy Ef =3.71 eV. The ideal ballistic
nanotube has quantized resistance of 1 /2G0=h /4e2=6.45 k�. �b�
The fluctuations of average conductances in �a� show different be-
haviors near and away from Fermi level. We can also observe that
the higher the temperature, the smaller �larger� the average conduc-
tance �conductance fluctuation� is.

REN et al. PHYSICAL REVIEW B 79, 161404�R� �2009�

RAPID COMMUNICATIONS

161404-2



to study the transport scaling. This strategy is the same as a
recent study on the doped silicon nanowires.23 Our coales-
cent longest nanotube is composed of 20 160 carbon atoms.
In the calculation of conductance near the Fermi energy, a
statistical average has been done over 300 coalescence real-
izations for each tube length. The results are shown in Fig. 3
in which we give the ensemble-averaged resistance as a
function of tube length for atomic configurations generated
at three different temperatures. If the electron transport is
ballistic, the resistance should not depend on length. How-
ever, we found that the resistances grow as functions of
length. It initially increases in a linear manner, indicating that
the length of the tubes we considered is in the quasiballistic
or diffusive regime. In such a regime, as the resistance is
commonly analyzed with a linear relation in the form R
=Rc+ �Rs�L /d, where Rc=1 /G0= �1 /N�h /2e2 is contact resis-
tance, �Rs� is resistance of a single segment, and L /d is the
segment repeating number. If we take the mean-free path as
the distance in which the resistance has become twice the
value of the intrinsic contact resistance, the mean-free path is
about 300 Å. For the even longer nanotube, the resistance
starts to increase more rapidly above the initial linear scaling
behavior, manifesting the so-called medium localization.24

Eventually the resistance should increase exponentially or
superlinearly with length when one-dimensional localization
effect emerges, as confirmed in the recent experiment.25 Fur-
ther we can observe that as the temperature increases, the
deviation from single segment linear scaling becomes larger
and the onset length scale for localization is reduced. We
have fitted the data with a power-law relation R=a�L /d�b

and found the exponent b values to be 1.10, 1.15, and 1.33
for 100, 300, and 700 K, respectively. For a given tube
length, the intrinsic resistance of the freestanding one-
dimensional metallic nanotube is found to increase with the
absolute temperature.26 As the tube length increases, tem-

perature starts to play a more dominant role, and the atomic
displacements eventually cause localization effect to set in.
This thermal effect is more clearly presented in the inset of
Fig. 3 where we replot the scaling data in the main frame.
For the longest tube L /d=35 considered here, we can esti-
mate the temperature coefficient to be about �
= �1 /R�dR /dT
0.001 /K.

In conclusion, the quantum conductance in a metallic
freestanding single-wall nanotube is studied at several tem-
peratures. Substantial temperature dependence of the con-
ductance in the range of 100–700 K has been revealed. We
show that at a specific temperature the atomic displacements
induce scattering, which in turn impose a length scale for
ballistic transport along the metallic nanotube. Our method
can be applied to investigate other carbon materials such as
graphene where buckling effect is also important at room-
temperature condition.22

Recently, experimental work has been carried out to mea-
sure the individual metallic single-wall carbon nanotube’s
resistance from room temperature up to 1000 K in vacuum.
A relatively small linear temperature dependence of resis-
tance is obtained.27 Their measured temperature coefficient
1.1�10−3 /K is in good agreement with our long nanotube
calculations. This value is also consistent with the results of
n- and p-type silicon nanowires measured between 75 and
325 K.28
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FIG. 3. �Color online� Calculated resistance scalings of long
nanotubes under different temperatures are shown. The green solid
line shows the resistance for Ohm’s law behavior with linear length
dependence. The inset displays the same data set but now as a
function of temperature for different number of interconnected
segments.
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FIG. 2. �Color online� Inset shows the displaced schematic con-
figurations at room temperature, which gives the carbon-carbon dis-
tances broadened in the histogram. In the main frame three vertical
lines indicate the first, second, and third nearest-neighbor distances
for the perfect equilibrium configuration. The cutoff distance of
electron overlapping in our tight-binding model is 3.3 Å.
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